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Abstract

The goal of the project is to compare two memory images of one virtual machine and

extract a high-level view of changes in kernel data structures, which is achieved through

structured and typed memory based inspection on debug-symbols of the Linux kernel.

The results of the comparison shall be the base for a machine-learning approach to

identify malicious behaviour based solely on passive memory observation.
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1 Overview

In a first step of meaningful virtual machine memory introspection, the exact semantics

of all data in memory need to be known, which seems like an impossible task at the first

glance, but fortunately access to memory semantics is essential for other tasks (mainly

debugging) and thus a lot of required information can be obtained with ease. When

compiling a binary, the compiler can be told to add debug information, describing data

types and structures, which is fundamental for accessing memory in meaningful ways.

Additionally, the debug information will note the addresses of global variables. These

are going to be the entry points for memory inspection, as they allow us to recursively

follow typed information such as structures and pointers through memory. Though there

are still many obstacles to overcome, this approach is a giant first step in full memory

inspection.

In order to access not only flat kernel memory, but complete paged memory, paging

is being implemented in a second stage of the project, before eventually measures to

analyse changes between two memory dumps can be initiated.

By using the outcome of this analysis we were able to inspect if the effects of installing

rootkits into the kernel can be observed. Our conclusions can be found in chapter 6.
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2 Data acquirement process

Debug kernel images contain all information needed for memory inspection in a binary

format. However, as implementing a parser to access the binary format debug symbols

seemed unreasonable due to elf’s complexity and likelihood of being subject to change,

the decision was made to not work on the raw data, but to parse objdump’s output of

the debug symbols which has some advantages.

Size reduction A debug kernel image is usually around 50 to 100 mb in size, while the

parsed and cleaned debug symbols are only around 15 mb.

Redundancy reduction The main reason for size reduction is, that most redundancies in

the symbols have been removed. The kernel image tends to contain many duplicate

symbol descriptions, which also tend to complicate other tasks and manipulations

on the data base.

Manipulability Having a parsed object presentation of all kernel symbols allows us to

manipulate objects, enrich them with functions (such as parent relationships) or

introduce new more abstract types like Strings (for arrays of chars).

The following sections describe how the reduced, cleaned-up model of kernel objects

end up as python objects. These store all relevant information from the debug symbols

and are enriched with functions and attributes to facilitate access. The full documenta-

tion is available through pydoc.TThe next section gives some examples.

2.1 Parsing Data

Listing 1: A typical objdump structure

<1><c6 >: Abbrev Number: 4 (DW_TAG_base_type)

<c7> DW_AT_byte_size : 4

<c8> DW_AT_encoding : 5 (signed)

<c9> DW_AT_name : int

<1><122>: Abbrev Number: 11 (DW_TAG_typedef)

<123> DW_AT_name : (indirect string , offset: 0x82a): __kernel_pid_t

<127> DW_AT_decl_file : 4

<128> DW_AT_decl_line : 14

<129> DW_AT_type : <0xc6 >

Every type has a location in the binary file. The output of objdump includes this location

as the byte-offset for every piece of information displayed. The location is represented

by the hexvalue enclosed in brackets (e.g. <c6> for type int in line 1 of listing 1). During

the parsing process this location value is used as the type’s id. Other types may reference
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this type and will use the offset as well to reference it. In the example on line 9 the type

<122> (definition begins on line 5) does this by declaring the type to be based on another

type declared at offset 0xc6. Here the relationship is established that the typedef-type

named kernel pid t is actually a signed integer. From now on the type int will thus

be base-type of kernel pid t.

Every type has a base-type unless the base-type is void or the type is a struct or

union, because those are either not resolveable (void) or form a collection of other types

(structs and unions). A type’s base-type as defined earlier does not necessarily have to

be a base type as defined by objdump (such as unsigned short integer), but can be

an arbitrary other type. For disambugiation purposes we’ll now call types that objdump

refers to as base type BasicType as its instances reference true basic types such as

unsigned long int or char. Base-types in contrast can be of any type: For example a

pointer type might have a structure type as its base-type).

Listing 2 shows a list of objdump primitive types that are parsed by the tool. Types

denoted with a * are parsed, but currently ignored in tool-operation, because the focus

has been on making data meaniningful. Parameters of functions or declarations of

subprograms are not yet of any use to this objective.

Listing 2: Used types
structure_type subroutine_type variable formal_parameter*

union_type enumeration_typ const_type subprogram*

member enumerator typedef inlined_subroutine*

array_type pointer_type base_type lexical_block*

subrange_type

Each type may have several unique properties (such as the byte-offset for members of

structs). All types are modeled as classes and parse the relevant properties. Arrays form

a special case as their size is not provided in the type itself. It is only implicitly known

through a subrange-type referencing the corresponding array-type. These subrange-

types hold a upper bound property, allowing to determine the array’s size.

2.2 Data Representation

To give an idea on how those types are used in the program, we’ll describe some of them

exemplary:

Const, Member, Variable These are very simple, similar types, as they are basically

just aliases. A const int is just an int with the restriction of not being editable which

is not of importance to data representation and access. So it is going to be modelled as

a Const class which has its base attribute set to the BasicType instance for an integer.
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Each type has a value(location) function to retrieve a representation of the memory

at address location, assuming that the memory stored there is in fact of that type.

The only task of the Const.value(location) function is therefore to call the base-

type’s value(location) function, which, for the BasicType instance of the example that

represents an integer, would initiate a memory read to return the integer representation

of memory at the virtual address location.

Member and Variable are just named references to other types. i.e. a struct might

have a member named number having a BasicType named int set as its base-type. Once

again, the base-type does not necessarily have to be a BasicType instance, but can be

any other type such as a Pointer or a Struct.

Pointer A pointer is still similar to the previously presented alias-types, except that

pointers have to modify the addresses while passing addresses to the base-type. So

the call to Pointer.value(location) will read the address from location and call the

base-type’s value(location) function, to evaluate the value. While this is done, special

care has to be taken for null-pointers which occur frequently.

If for some reason, it is important to read the pointer’s value instead of the value of

the element it is pointing to, a high-level type-cast allows to access the pointer as being

an object of an arbitrary other type.

Struct Structure types are more complicated, as they need to take care of managing

their members. Structs (and Arrays) provide a standard iterator function to loop

through all members. When accessing a member, the Struct takes care of modifying

the access location according to the Member’s offset. For convenience Structs can also

be used as a dictionary, as they override the getitem method and thus allow named

access to members. The value(location) cannot return a simple value, but will return

a dictionary with all the member’s values included.

2.3 Clean-up process

Compared to their compressed storage in the debug image, the objects require much

more space in memory, thus the parsing process will quickly require gigabytes of RAM

for operation. This is also because of the many duplicates within the types, as the debug

image tends to include multiple copies of most types.

To reduce memory usage duplicate objects are eliminated a couple of times during

the parsing process. However, there is no easy identification of a duplicate object except

for its properties. Therefore a comparison function has been implemented for each
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type to decide whether types are equal. This test is based for example on name, size

and comparison of their base-types or members. Unfortunately during parsing, not all

references are already resolved, i.e. a type may have a base-type that is not yet known

to the application. Here the comparison is going to assume inequality. Additionally, the

process may not clean up duplicate types completely, since their ids might be referenced

by other types which remain to be loaded.

Eventually, once parsing is complete, the full clean-up process is started and continues

as follows:

1. Sort all types, using their comparison function. All equal types will now be located

next to each other.

2. Replace all equal types by the first representative. Create a list of replaced types

and their representative.

3. Modify all references to types that were cleaned up in step 2 and replace them by

a reference to its types’ representatives.

As the process takes some time (15-30 minutes), after parsing and cleaning, the col-

lected objects are dumped to a file using python’s pickle facility. This allows them to

be almost instantly accessible afterwards.
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3 Kernel Troubles

During the analysis it became clear, that the data model obtained through the debug

symbols is far from perfect. This is due to C language issues and the tendency of

developers to use type-casting macros, which override the data model obtained through

the debug images. This section is going to discuss several problem areas we came across

and shows ideas on how to work around them.

3.1 Kernel Symbols

Kernel symbols associate a memory address with a Variable instance (and thus a name)

which is known through the objdump output. However, not all kernel symbols are

contained in the kernel image itself. This is partly due to the fact, that several symbols

are not available at the time the kernel is built, but are hacked into the kernel after the

main build process.

The kernel itself contains a complete symbol table which is used, for example, for

loadable modules. Unfortunately this table is stored compressed in memory and its

address is also not yet known at build-time. While it would seem reasonable to use

heuristics to find this symbol table and implement the algorithm to decompress it, the

easiest approach is to just read all those symbols from either the proc-filesystem or the

System.map which should be available in most scenarios.

3.2 Linked Lists

Linked lists are a central data structure used in many places throughout the kernel and

there is a standard implementation of preprocessor macros facilitating the use of linked

lists in kernel code. These lists are actually very basic and only become powerful when

instrumented by those macros. Listing 3 illustrates the common usage, where the generic

list head is embedded into another data-structure.

Listing 3: Linked lists as used in the linux kernel

// | next | --> | next | --> | first |

// | last | <-- | prev | <-- | prev |

struct list_head {

struct list_head *next , *prev;

};

struct data {

int attribute;

struct list_head list;

};

struct data * some_data;

struct data * sample = list_entry(some_data ->list.next , struct data , list);
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The problem arises when list-members are accessed: some data->list.next points to

the list attribute in another instance of struct data. As such our tool will be able

to follow the linked list itself, but is not able to determine, that the entries actually

belong to struct data instances. Thus without further work, the tool would miss

data. This cannot be afforded with data structures so frequently used as linked lists. In

order to be able to follow the reference to the parent, it would be required to know the

parent structure and its struct list head member for the very memory location that

list.next points to. Unfortunately this information is not available.

A successful heuristic for some of these cases is, that list.next always points to a

list head-instance embedded in another instance of the same type (i.e. data.list.next

always points to a struct list head list member in struct data in the example).

This allows us to implement a meta-type for list head-members in structures and

handle those in such a way that they will recalculate the position when following a next or

prev pointer, which is also what the macros do (i.e. list entry(pointer, structure,

attribute) in listing 3). However, these macros are given explicit advice on what

attribute in which data structure is referenced by the pointer. With the meta-type

modification in place, the data model will no longer show data.list.next pointing to

an instance of struct list head, but will show it pointing directly to the next struct

data instance.

While this covers some amount of the actual uses of linked lists in the kernel, there are

a lot of notable exceptions in which the heuristic is not applicable. Often entry points

to linked lists are stored in global variables or structures having nothing to do with the

linked list at all. Another example of unconventional use of linked lists are structures

with multiple lists such as struct task struct whose children attribute is actually a

linked-list pointing to the sibling attribute in another task struct. Since the manual

tracking of such exceptions is time-consuming, we rather tried to automate this task.

Automated source-code based information acquirement We implemented the non-

manual approach that we already had in mind earlier but originally assumed the hurdles

for an actual implementation to be to hard to overcome. The approach looks for usages

of linked-list related macros on a source-code level and can then establish relationships

between members and referenced data structures. The scanning of the source-code is

based on regular expressions and relies largely on the rather clean coding style used by

the kernel programmers. The biggest trouble is then to discover the types of the involved

variables. However, with the library for accessing debuging symbols already at hand,
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this becomes feasible. The remaining task is to reconstruct the data model according to

the references established through the analysis.

Listing 4: Linked lists referencing other types (excerpt from kernel/exit.c)
void mm_update_next_owner(struct mm_struct *mm)

{

struct task_struct *c, *p = current;

list_for_each_entry(c, &p->children , sibling) {

...

}

...

}

Figure 1: Illustration of references used by linked lists in a task struct

The example in listing 4 and figure 1 can be used to illustrate the procedure: A loop

over all elements in a list is a frequent task. c is the current element and its type

struct task struct is the target object, i.e. after the process, the tool should be able

to do pointer magic such that children.next points to a struct task struct. For

now we do not know that children.next points to the sibling attribute of a struct

task struct. The usage of the macro however gives us the information: the last pa-

rameter is the name of the attribute inside the destination type. The second attribute

&p->children gives us information for which member this association will be valid.

Again we use the debug symbols to find out that p is a struct task struct whose

children’s attribute is then accessed.

Using this procedure, the mapping from task struct.children to task struct.sibling

is established. When accessing children.next we then know, that the pointer needs to

be modified to subtract the offset of sibling within task struct to get a pointer to an

actual task struct.

This approach yields considerable results: out of roughly 700 linked-lists 300 are auto-

associated and the regular-expression based source-lookup tool could still be improved
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a lot to increase coverage. Nevertheless, there are a number of remaining structures for

which the self-referencing heuristic mentioned earlier might not be valid and to which

we do not gain access.

3.3 Hashtables

Even more troublesome than linked lists are hashtables, because the simple heuristics

that have been helpful for linked-lists cannot be applied. A hashtable is usually an array

of struct hlist head elements which are entry elements (pointers) to a linked list of

items in this bucket of the hashtable. Each such item is represented by a hlist node

structure which is a linked list similar to the list head structure. These nodes are also

embedded into other data structures.

Listing 5: Headed linked lists as used in the linux kernel

// first --> | next | --> | next | --> | next |

// | prev | <-- | prev | <-- | prev |

However there is no reference which structures belong to the hlist nodes of a given

hashtable array. As it turns out though, the usage of the macro void hlist add head(struct

hlist node *n, struct hlist head *h) establishes a connection between a hlist head

instance and the corresponding hlist node structure. While this macro and its use is

not accessible from the debug symbols, it is quite grepable from the source. We did not

yet implement an automated approach, but feel confident that the same techniques we

used to auto-associate linked lists can be used here to auto-associate the corresponding

parent structures (those that include hlist head, hlist node). We can then use the

generated mapping to implement an abstract Hashtable data type that takes these spe-

cialities into account. Also a manual approach might succeed, as it seems there are less

than 50 different hashtables in the kernel.

As long as the hashtable-handling has not been implemented, heuristic workarounds

may be used, although these dirty approaches have significant drawbacks and should

only be used to overcome the time until the hashtable-mappings are present. There

is an upper bound for structures including those hashtable nodes, which never exceed

2048 bytes. Thus while the specific semantics of a memory region belonging to a struct

hlist node are unknown, it is known that up to 2048 bytes are being used to store

information. As such, comparing memory can go ahead and compare the raw bytes,

trying to find out what changed. Unfortunately all hashtable nodes also contain pointers,

indicating that there is more information belonging to a node and that this information

is not stored within the node itself. Since the semantics of the memory region are
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unknown, we are likely to miss entry points to other memory structures when restricting

hashtable node comparison to the very local memory only.

Hashtables in the kernel are usually used to store data, but most likely do not store

very sensitive data or provide entry points to huge memory regions which would be

missed if the references from the hashtable would not be followed. As such it seems

reasonable to skip hashtable handling in a first approach completely.

3.4 Arrays and Pointers

It is common convention to declare Strings as char-pointers (char *), however in the

data model, a char * is a pointer to a BasicType instance char which is exactly one

byte long. While this knowledge is used to convert all char-pointers to a String meta-

type, it is not clear what should be the behaviour for other types, as int * might also

reference an integer field. However, even if the integer field is correctly declare as int

field[], the length is still unknown, leaving it for the program to guess or know. There

seems no easy way to overcomes this problem, but to ignore all the data in the field

unless one uses manual approaches: Usually the array’s length is indirectly known: be it

a static configuration or another member of a struct. It is then no problem to override

the array’s length by type-casting to an Array of a specified length. There is also a

NullTerminatedArray class which assumes a NULL entry to be the end delimiter, which

might be the case for many of those arrays with unknown length information.
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4 Memory Access

Having analysed the kernel symbols, we now know where data of which type is located in

memory. Unfortunately the addresses found are virtual. The concept of virtual memory

means that the physical locations within the built in memory chips are not accessed

directly. Before accessing a virtual address location an address translation has to be

done, which, in the case of a normal running system, is done automatically by the

memory managing unit (MMU).

In Linux 2.6 there are two main regions of virtual kernel space memory. One part from

address 0x0000000000000000 to PAGE OFFSET-1 (which is 0xffffffff80000000-1 1),

which can be accessed using the standard paging technique (4.2), the other part from

PAGE OFFSET up to 0xffffffffffffffff, is addressed using a linear address translation.

4.1 Flat Kernel Memory

The virtual memory area from PAGE OFFSET upwards is again divided in to two different

regions. One from PAGE OFFSET upwards, and one from START KERNEL map 2 upwards.

In either case the starting address gets subtracted from the virtual address to acquire

the physical address of the memory location inspected. All in all, we can say that regions

for which the simple subtraction memory address translation is performed, are located

in the beginning of physical memory.

Listing 6: Accessing flat kernel memory and determine whether paging is required.

if (virtual >= __START_KERNEL_map) {

return (virtual - __START_KERNEL_map );

} else if(virtual >= PAGE_OFFSET) {

return (virtual - PAGE_OFFSET );

} else {

// otherwise use the address lookup function

return page_lookup(virtual );

}

4.2 Paged Kernel Memory

We have a completely different situation if we encounter paged virtual memory addresses.

Memory blocks, which are linear in virtual address space, may be distributed over several

pages, which are not necessarily laid out linear in physical memory. Normally most of

1This numbers are valid for Kernel 2.6.27 and 2.6.28 with the default configuration on x86 64 archi-
tecture.

2which is 0xffffffff80000000 in Linux 2.6.28 on x86 64
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the kernel memory is linear accessible, because some devices that do direct memory

access (DMA) require the memory region they are accessing to be linear not only in

virtual, but also in physical address space. The only way to get a paged memory region

in the kernel address space is to do a vmalloc(), which is mostly done when a bigger

portion of memory is required, for example when inserting a kernel module.

When the x86 64 machine encounters a virtual paged address, it looks up its physical

page address in a page directory. Therefore the virtual address is divided into several

parts, that index into the specific page tables (see figure 2).

Figure 2: Linux x86 64 page table structure. Source: http://linux-mm.org/

PageTableStructure

As it can be seen in the figure there exist two types of pages: 4k and 2M pages. The

only difference between them is their size and the indexing. For 2M pages the last 21

bits of the virtual address are used to define an offset inside the page and the pte page

directory is omitted. For 4k pages the last 12 bits define a page offset and the 9 bits

before that define an index into the 4-th level of page directory (pte)

Since we want to access a physical memory image without having a MMU we have

to emulate the accesses and lookups into the page directories. The entry point is the

base address of the pgd directory. It is kept in the ksymtab init level4 pgt kernel

symbol. Then the virtual address is shifted successively and the lookups into the page

directories are done.

Additionally each page possesses several flags that have to be checked. One already

mentioned, is the PAGE 2M flag which identifies a 2M page. Another important flag is the
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PAGE PRESENT flag, which is only set, if the page is allocated and available in physical

memory. Otherwise the operating system would raise a page fault, to handle the situation

accordingly. The third important flag would be the PAGE SWAPPED flag, which identifies

that the page is not stored in main memory. Instead it is stored on some dedicated disk

space (swap) and has to be loaded from there first. In our implementation swapped

pages are not supported.

Every userspace program possesses its own virtual address space. Therefore separate

page tables have to be held for each. Accessing this address is possible, if we know the

process to which the address belongs and its pagetable location. Then a lookup can be

done, just as in case of paged kernel addresses. In our work the focus is on analysis of

kernel rootkits, therefore user space memory access is not implemented.

5 Memory Image Comparison

A central goal of this work is to watch memory of a virtual machine for changes and judge

if malware (especially rootkits in this case) could be detected. In order to accomplish

this, two memory images (one taken before malware installation, one after) have to be

compared. Usually one would compare the two physical memory dumps bytewise and try

to guess if the changes happended in regions known to be security critical. The drawback

of this approach is, that one needs prior knowledge of the malware and manually create

rules to detect specific malicious behaviour. Unfortunately it is infeasible to define rules

of yet unknown malware. Therefore the opposite direction should be tried.

Instead of starting with binary differences of memory images, we start from the high

level view of kernel symbols. For those we check whether the memory where they reside

changed and if these changes reflect the behaviour of malware.

To perform a meaningful comparison two memory snapshots are opened at the same

time, while our tool recursively inspects the situation: Each toplevel kernel symbol is

added to a queue of symbols to compare. The search is then conducted using a breadth

first search algorithm. Until now, the tool only reports if a specific symbol has changed.

In order to detect malware successfully, it may prove neccessary to compare the content

of the changes, too. Since the whole memory image is walked through by a python script

the performance is still far from realtime.

To implement realtime analysis for virtual machines while they are running, it could

be possible that we again have to go the other way: Find the binary differences of the

memory snapshots and abstract a high-level view of what changed without recursively

checking every kernel variable. Using our memory-coverage map, we are able to map a
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memory-location to a kernel variable and thus can get a list of changed variables when

applying this technique to the locations found by the bin-diff tool. While this map

can be calculated in advance, this has some serious drawbacks that would need to be

addressed beforehand. If bare variables change, this is no problem, but for example in

the case of pointers, the location of data pointed to could have changed, and therefore

the value of the pointer. This would invalidate all variables in the map to which the

pointer is a parent node (in the chain from a global symbol to the variable). One might

then think of updating the mapping in iterative ways, however such algorithms remain

yet to be implemented.
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6 Rootkit Analysis Findings

For each analyzed rootkit a snapshot has been taken before installation and after and

the changed kernel symbols were listed. We used this information to first of all check if

malicious behaviour of each different type of rootkit is reflected among all the changed

symbols. The following sections present our findings.

6.1 Rootkit Types

For a rootkit it is not only important to implement some specific services needed by

the attacker, but also to make those capabilities accessible. At the same time the ma-

licious module wants to hide itself and all its activities from the system administrator.

To accomplish this, several hooking mechanisms into the kernel have to be established.

Among the rootkits, that are public available, there are basically three different mech-

anisms of hooking into the kernel. One is to generate special files in the Virtual File

System (VFS) like proc, another one is to modify kernel structures directly and the

third and most commonly used one is to replace specific system calls in the system call

table (sys call table).

6.1.1 System Call Replacement

When using an operating system, the user must be able to perform system calls in order

to invoke special kernel functionalities (for example listing and opening files). For this

purpose the linux kernel manages a big array with function pointers to the system call

functions implementing each functionality.

If a programm invokes a system call (interrupt 0x80 on x86 architectures), the inter-

rupt dispatcher looks up the desired function in the sys call table and calls it. Until

kernel version 2.6 the sys call table was among the exported symbols that could be

used by loadable kernel modules. Therefore it was easy to replace the function address

by an address of a function that intercepts the system call to, for example, filter out

specific files from directory listings in order to hide the rootkit itself.

Since Kernel 2.6 the syscall table symbol was no longer exported and the rootkit

authors had to invent new ways of finding the table location:

1. K
¯

ernel Memory Search: With this method the memory area between init mm.end code

and init mm.end data (which is basically the text segment of the kernel image),

is searched and the contents are compared to the addresses of known system call
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functions. Since we know where the specific system call function, we searched for,

is located in the system call table, we can calculate the start address.

2. I
¯
nterrupt Handler Search: On the x86 architecture there exists the sidt instruc-

tion. This instruction gives us the address of the interrupt vector table. We know

that for calling a system call the 0x80 interrupt is raised and the appropriate in-

terrupt handler calls the right system call function for us. Since the handler has

to know there the table with all the system calls is located, we can search in the

memory section, where the handler resides for the actual function call and extract

the start address of the sys call table from there.

3. C
¯

ompile Time: A third technique is to use the address known from System.map

at compile time. In this case we have to be able to compile our rootkit on the

machine where we want it later to be run. We also have to have access to the

System.map to lookup addresses. Eventually a module could also find out the

syscall table address at load by looking it up in /proc/kallsyms. In our tests this

is the method we used.

On newer 2.6 kernels it is not sufficient to find the system call table. Several protection

mechanisms have been employed: The pages where the table resides is flagged as read

only. Trying to change that with the set memory rw function will fail since this function

also has some protection built in. But a kernel hacker is still able to modify this part of

memory: Since we cannot use the kernel functionality to change access rights of memory

sections, we have to implement them ourselves. Walking the page tables and changing

flags could be implemented in the loadable kernel module itself.

Detection of such modifications are possible with our tool. It detects all changed

function addresses in the table. One rootkit we inspected did even go further than

just replacing function pointers: It did not replace the system call table itself, but it

first copied it and modified the copy. Then the interrupt handler for system calls was

modified to use the new system call table. Such a modification is not yet detected by

our tool, since we do not yet take registers into account as global symbols. Thus the

tool still uses the address of the old table, which stays unmodified. If we are inspecting

a virtual machine the machine registers have to be considered as well.

6.1.2 VFS Manipulation

The virtual file system is an additional layer on top of all the file systems implemented in

Linux. It enables the user to uniformly access his files independently of the underlying
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file system. One special file system present in Linux, is the proc filesystem. It was

implemented to give access to kernel and loadable module parameter configuration or

to access debug information present in the kernel.

The file entries in the proc file system are different from ordinary files. On access of

such an entry, there is no read from a block device. Instead a function call to a specific

function associated with that file node is called. Within this function the neccessary

data can be generated and copied back to the user. Analog happens upon write access

to the file. The data written by the user can be parsed and configuration parameters

can be set accordingly.

One rootkit we analyzed used VFS manipulation to give root privileges to certain

processes. To accomplish that a new file is created in the /proc directory. If a process

accesses this file, the kernel function handling the read or write operation has access to a

task struct structure of exactly that process. Therefore it is easy to modifiy the uid,

gid,... members of that structure, which control the privileges.

Detection of such a modification can be done using our toolkit. The difficulty in this

case lies in the classification of the changes. In our experiments we observed numerous

proc filesystem modification during normal operation of the running machine. Just

creating an entry in /proc is not neccessarily malicious. Changing the UID of a process

can be, but can also happen during normal runtime (take sudo for example). Therefore

unauthorised modification is very difficult to spot. One can try to match malicious

behaviour by inspecting the filenames of the newly created files, but this name can

easily be changed to something unsuspicious by the attacker.

6.1.3 Direct Kernel Object Modification

Most of the rootkits did hide themselves by system call interception and filtering of

the results as described in section 6.1.1. Another technique is to modifiy the kernel

structures directly. Of course malicious attacks other than just hiding can be achieved

with direct kernel object modification.

For keeping track of all the loaded modules, the kernel manages a double linked list.

The kernel system calls that deal with modules (e.g. insmod), make use of this list.

If the user requests to unload a specific module from the kernel, first the module list

is searched for one with the specified name, then this reference is taken, unloaded and

removed from the list.

If the attacker now removes a specific module (see figure 6.1.3) from the internal list,

by just updating the pointers (see figure 6.1.3) and thereby skipping one entry in the

double linked list, the kernel itself has no more access to this. Removing and other access
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Figure 3: Skipping a module in the internal kernel module list.

to this module is no longer possible. Also the module does not show up on lsmod, which

was the intention of the modification. Another fact is that all the hooks and callbacks,

the malicious module may have placed into the kernel, still exist and the module itself

still resides in memory. Therefore the normal operation of the rootkit is available, while

unloading and listing is not possible.

Detecting such modifications is possible with our toolkit. We are able to monitor all

changes of kernel structures. For double linked lists, the list has to be traversed and all

the entries analyzed (though the current version still has some problems fully dealing

with linked lists). To be able to successfully detect an attack on kernel structures,

we have to further analyze the changes. It could be possible that the module list has

changed, because we loaded a kernel module by hand. These kind of changes have to be

filtered out.

Another difficulty in detecting such modifications are big timesteps between two anal-

ysis. If we take one snapshot before the malicious rootkit is loaded and one far after

the module is completely loaded and already hidden, then we will see no changes in the

module list. The module already vanished and cleaned itself up, leaving no direct traces

for us to analyze. We still can search the memory for placed hooks into the kernel, which

have to be there in order for the rootkit to function correctly.

6.2 Analysis Conclusions

Most of the modifications done by the studied rootkits can be identified with our method.

The big challenge is to distinguish between malicious and normal changes of kernel
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structures. In the case of proc file system modifications we could find more modifications

by just running a xterminal with some commands then by inserting the tested rootkit.

When supervising a virtual machine, it is also neccessary not only to monitor the

memory, but also the special registers of the virtual cpu. Then even modifications of the

interrupt handlers and with that copies of the system call table can be detected.

21



A Usage Instructions

Compilation Adjust the path to the kernel source in your Makefile. Then, use the

make command to compile the C modules required by the python package.

Kernel Preparation A kernel image with debug symbols must be compiled or obtained.

Afterwards objdump can be used to extract the debug-symbols in a textual format

readable by the tool. Pay attention to use a recent version of objdump, as older

ones might fail to read debug-symbols. Next, the type parser script is used to

create the initial cleaned-up data model. As noted earlier this last step may take

some time. It will save its results in the data.dumpc file, which is later used to

quick load the data model.

Listing 7: Initialisation Workflow

# objdump -g vmlinux > vmlinux.dbgdump

# python type_parser.py init vmlinux.dbgdump

Additional Information Acquirement Certain information is not available in the ker-

nel’s debug symbols. Linked lists have been implemented and require an additional

setup step to work correctly:

Listing 8: Linked List Initialisation Workflow

# python type_relater.py /path/to/compiled/kernel/source meta_info.dump > /dev/null

Memory Unlocking In order to access the /dev/mem device without any restrictions,

the supplied memunlocker kernel module needs to be loaded:

Listing 9: Unblocking /dev/mem

# sudo insmod memunlocker/memunlocker.ko

Using the Shell Interactive kernel symbol exploration can be done via the python shell.

First of all the precalculated debug symbol data has to be loaded. Then a mem-

ory image (can be the /dev/mem device or a physical memory dump of a virtual

machine) is mapped using the memory.c python plugin.

Listing 10: Starting up interactive shell

# python

>>> from tools import *

>>> types , names , addresses = init(memory_image , parents=True , linked_lists=True)

>>> it = kernel_name(’init_task ’)

>>> init = it.children.next
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>>> init

<Memory <c_types.Struct instance ’task_struct ’> @0xffff88001ccc8000 >

>>> init.pid

<Memory <c_types.Member instance ’pid ’> @0xffff88001ccc8268 >

>>> print init.pid

1

>>>

Symbol Comparision In order to be able to compare a symbol at different time snap-

shots, a second memory dump has to be mapped. Then the location of the level 4

page table directory has to be published to the memory python module.

Listing 11: Mapping a second memory image

>>> memory.map(second_image , filesize , mapsize (usual same as filesize), 1)

>>> pgt = kernel_name(’__ksymtab_init_level4_pgt ’)

>>> memory.set_init_level4_pgt(int(pgt.value.get_value ()))

If everything is set up symbols can be compared by first getting a reference with

ref = kernel name(’symbol’) and then using the memory manager’s .memcmp()

functionality: ref.memcmp(). For a complete example see diff.py.

Report generation Several components are capable of generating (more or less) detailed

reports on actions and failures. This information will be of great use for improving

the tool and debugging errors it might have made.

Listing 12: Generating Reports

# python troubles.py > reports/trouble -areas.xml

# python type_relater.py /path/to/kernel/source meta_info.dump \

> reports/linked -lists -parsing.xml

# python tools/linked_lists.py > reports/linked -lists -autoassociate.xml
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